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Abstract

I will show how the machine lattice can be constructed from TBT data with the joint Kalman

filter (JKF). The JKF algorithm finds a fit to the TBT data so that the beta functions can be

constructed and lattice errors can be identified. Another feature of JKF is that noise from the

BPMs, pulse to pulse variations of the injected beam, error tolerances of the results can all be

taken into account. As a demonstration of JKF, I will show how the JKF can reconstruct the

lattice and identify the source of the error when it is applied to TBT (turn by turn) data generated

from a toy FODO lattice with a quad strength error.
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I. INTRODUCTION

The Kalman filter (invented in the 1960s [1]) is a very well-known method used in HEP

track reconstruction[2], aircraft feedback control[3], biological systems[4] etc. The power of

the Kalman filter is that it is a self-correcting algorithm. Intuitively, the Kalman filter takes

place in two steps: a priori knowledge and a model to predict an outcome. And then, it

uses the a posteriori knowledge of an actual measurement to correct itself before making

the next prediction.

In the context of lattice construction from turn by turn (TBT) BPM data, the necessary

parameters that have to be determined from the TBT data are the transverse position and

angle of the beam at every BPM together with the errors in the real world implementation

of the lattice like quadrupole strengths, rotations of beam line elements etc.

Notice that since BPMs only return position information, the remaining phase space

parameters and implementation errors will have to be constructed by the Kalman filter

from the TBT data. This is only possible when there is a lattice model that is not too far

from reality. In this paper, I will use the joint Kalman filter algorithm (JKF) for analysing

the TBT data. Note: there is another algorithm called the dual Kalman filter (DKF) which

I think should be used in the future. The DKF requires a smaller matrix inversion compared

to JKF.

II. STATE VECTORS

The parameters that I will need to find with the Kalman filter are contained in an object

called the state vector X. It contains both the transverse phase space description of the

beam, x and the real-world parameters errors θ

X(i)(n) =

x(i)(n)

θ(i)

 (1)

where (i) means that X, x and θ are measured at BPM i at the nth turn. Notice that I

have made θ independent of n because errors like quadrupole strengths and element rotations

should be constants.
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A. Phase space vectors

In the TBT method, the beam is pinged and then allowed to “freely” oscillate. The ping

can be either horizontal or vertical. And after N turns, I can write down N vectors that

represent the phase space at BPM i:

x(i)(0) =



x0

x′0

δ0

y0

y′0



(i)

x(i)(1) =



x1

x′1

δ1

y1

y′1



(i)

. . . x(i)(N − 1) =



xN−1

x′N−1

δN−1

yN−1

y′N−1



(i)

(2)

where (xn, yn)(i) are the horizontal and vertical position of the bunch, (x′n, y
′
n)(i) are the

horizontal and vertical angle of the bunch at BPM i at turn n. And δ
(i)
n = (δp/p)

(i)
n is the

fractional momentum error at at BPM i at turn n. For this paper, only the horizontal plane

is affected by dispersion. Thus when I say horizontal phase space, I mean (x, x′, δ) and

vertical phase space is (y, y′).

B. Parametric errors

In the real world implementation of the lattice, there will be errors. These errors can be

discovered from the TBT data provided that the distortions caused by them are not large,

i.e. these errors should be perturbations of the model lattice. Examples of parametric errors

are BPM rotation errors, BPM calibration errors and quad strength errors, etc.

At each BPM i, I will parametrize each of these errors into a vector θ(i). For the purposes

of this analysis, I will assume that θ(i) is stationary. With this assumption, the propagation

matrix between turns for θ(i) is simply the identity matrix.

III. PROPAGATION WITH PARAMETRIC ERRORS

I will divide up the discussion about how the bunch is propagated from from BPM i to

i+ 1 into two parts below. The first is the ideal case where there are no parametric errors.

The second is when parametric errors are included.
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A. Ideal transport with process noise

I define Mi→i+1 to be the matrix without any parametric errors that transports the beam

from BPM i to BPM (i+ 1) with the condition that (i+ 1)→ 1 if i = K. The entire TBT

transport sequence for N turns and K BPMs is as follows

x(2)(0) = M1→2x
(1)(0) +w(1)(0) Start at turn 0

x(3)(0) = M2→3x
(2)(0) +w(2)(0)

...

x(K)(0) = MK−1→Kx
(K−1)(0) +w(K−1)(0) Turn 0 is done

x(1)(1) = MK→1x
(K)(0) +w(1)(1) Next is turn 1

...

x(K)(N − 1) = MK−1→Kx
(K−1)(N − 1) +w(K−1)(N − 1) Done!



(3)

Since the phase space vector has dimension 5, Mi→i+1 must be a 5× 5 matrix

Mi→i+1x
(i)(n) =



m11 m12 m13 0 0

m21 m22 m23 0 0

0 0 1 0 0

0 0 0 m44 m45

0 0 0 m54 m55


i→i+1



xn

x′n

δn

yn

y′n



(i)

(4)

where w(i)(n) is called the process noise of the system. The process noise here can come

from the pulse to pulse injection errors of the beam into Booster.

B. Parametric errors

Next, I have to include parametric errors into the TBT transport sequence. Eq. 3 is

modified as follows:

X(2)(0) = F1→2[X(1)(0),W (1)(0)] Start at turn 0

...

X(K)(0) = FK−1→K [X(K−1)(0),W (K−1)(0)] Turn 0 is done

...

X(K)(N − 1) = FK−1→K [X(K−1)(N − 1),W (K−1)(N − 1)] Done!


(5)
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where W is the process noise that affects both x and θ.

As for Fi→i+1() (that includes Mi→i+1), I will show an example of how they look like in

Section IV D.

IV. JOINT KALMAN FILTER ALGORITHM

In this section, I will describe the JKF algorithm that I will apply to the TBT data. I

will not derive the JKF algorithm because it is covered elsewhere.[5–7] As I had stated in

the Introduction, the JKF consists of two steps that I will discuss below. However, before

I start I will introduce new notation for the state vector to differentiate its value at the a

priori or “prediction’ step and the a posteriori or “correction” step. Here’s my notation:

X
(i)

(n) : state vector at BPM i at turn n in the prediction step.

This vector is called the predicted state vector.

X̂(i)(n) : state vector at BPM i at turn n after the correction step.

This vector is called the estimated state vector.


(6)

A. A priori or prediction step

In the prediction part, I have the following at BPM i at turn n

X
(i)

(n) = Fi−1→i[X̂
(i−1)(n− 1),W (i−1)(n− 1)] (7)

i.e. the above equation gives the predicted state vector at BPM i given the estimated state

vector from BPM i − 1. Note: X
(i)

is clearly model dependent because it uses a model to

make a prediction.

The predicted covariance is also calculated in this step and it is given by

Σ
(i)

(n) = Â(i)(n− 1)Σ̂(i)(n− 1)[Â(i)(n− 1)]T +Q(n− 1) (8)

where

Â(i)(n) =
dFi−1→i[X,W (i−1)(n− 1)]

dX

∣∣∣∣
X=X̂(i−1)(n−1)

(9)

is the Jacobian of Fi−1→i evaluated with the value of the estimated state vector X̂(i−1)(n−1)
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at BPM i− 1 from the previous turn; and

Q =

Σ2
w 0

0 Σ2
θ

 (10)

is the covariance matrix of the process noise. Here, Σ2
w is the covarance of the process noise,

w, that affects the phase space part of the state vector. Σ2
θ is the covarance of the process

noise that affects the parameters part of the state vector. (For TBT, my guess is that Σ2
θ

should be interpreted as the variance of the tolerance.)

B. A posteriori or correction step

In the a poteriori or correction step, the algorithm corrects the predicted state vector

X
(i)

(n) from the previous step with a measurement. In the TBT case, the correction comes

from the position of the beam, ζ
(i)
n measured by BPM i at turn n,

ζ(i)(n) =


ξn

∆n

ηn


(i)

(11)

where ξn is the x position, ∆n is the dispersion, and ηn is the y position measured by BPM

i at turn n.

The predicted position z̄(i)(n) is found by projecting out the transverse position coordi-

nates from X
(i)

(n) with matrix H

z̄(i)(n) = HX
(i)

=


1 0 0 0 0 0 . . . 0

0 0 1 0 0 0 . . . 0

0 0 0 1 0 0 . . . 0





xn

x′n

δn

yn

y′n

θ1

...

θM



(i)

=


xn

δn

yn


(i)

(12)

whre I have assumed that there are M parametric errors.
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The Kalman gain K is

K = Σ
(i)

(n)HT
(
HΣ

(i)
(n)HT +R

)−1

(13)

where R is the error covariance vector of the BPM measurement, i.e.

R =


σ2
ξ

σ2
∆

σ2
η

 (14)

With the above, the estimated state vector, X̂(i)(n), is

X̂(i)(n) = X
(i)

(n) +K(ζ(i)(n)− z(i)(n)) (15)

and the estimated error covariance matrix is

Σ̂(i)(n) = (I −KH)Σ
(i)

(n) (16)

C. Application to TBT data

Here my pseudo-code for analyzing the TBT data. Note: the iterative counter range for

both n and i is not the same as what I used in Mathematica because counting has to start

from “1”.

1. Initialization At initialization, I will set the estimated state vector at BPM 1 to the

measured values for position and dispersion, and the angles and parametric errors to

zero, i.e.

X̂(i)(0) =



ξ0

0

∆0

η0

0

0
...

0



(1)

(17)
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The estimated covariance errors have to be large here because the angles and para-

metric errors are probably not zero. I have set it to a (5 + M) × (5 + M) identity

matrix:

Σ̂(1)(0) = I(5+M)×(5+M) (18)

2. Iterate For each turn n = 1 to N do

(a) For each BPM i = 2 to K + 1 do

i. Check to see if the transport should wrap from BPM K back to BPM 1. See

Eq. 3.

ii. Prediction Calculate the predicted state vector and covarance error. An

example of F can be found in the example shown in section IV D

X
(i)

(n) = Fi−1→i[X̂
(i−1)(n− 1),W (i−1)(n− 1)]

Σ
(i)

(n) = Â(i)(n− 1)Σ̂(i)(n− 1)[Â(i)(n− 1)]T +Q(n− 1)

 (19)

iii. Calculate Kalman gain Caclulate the Kalman gain

K = Σ
(i)

(n)HT
(
HΣ

(i)
(n)HT +R

)−1

(20)

iv. Correction Calculate the estimated state vector and covariance error

X̂(i)(n) = X
(i)

(n) +K(ζ(i)(n)− z(i)(n))

Σ̂(i)(n) = (I −KH)Σ
(i)

(n)

 (21)

(b) end of i loop.

3. end of n loop.

D. FODO example

In this example, I have made a simple 3 cell FODO lattice. For this toy model, I will

only look at the (x, x′) phase space with zero δ.

The strengths of the quads, length of the quads and the drift space are summarized in

Table. I. I have placed a BPM at the centre of each quad magnet. See Fig. 1.

The comparison between the β function of an ideal FODO and the lattice with the red

D quad (Q4) strength increased by 10% is shown in Fig. 2.
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Quad strength k Length of quad `q length of drift `d

0.54102 m−2 0.5 m 2.5 m

TABLE I. The parameters of a FODO cell.

BPM 1 BPM 3 BPM 5 BPM 1

BPM 2 BPM 4 BPM 6

Beam direction

Q1

Q2

Q3

Q4

Q5

Q6

Q1

FIG. 1. This is the 3 cell FODO lattice that I have used for my example. There is a BPM at the

centre of each quad. The injected beam enters at BPM 1. The red D quad (Q4) is the one where

I have increased its k value by 10%.

1. TBT data

I generated the TBT data by assuming that (x0, x
′
0) = (0.001, 0.001), i.e. 1 mm offset

and 1 mrad angle. I added Gaussian noise that has σ = 0.05 mm to the x data to simulate

measurement noise from the BPM.

� � �� ��
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� (�)

β
(�

)

β� ��������� ���� ��������� � ���� ������

ϵ=�

ϵ=���

FIG. 2. This is the comparison between the β functions of the ideal FODO lattice and when the

red D quad (Q4) strength is increased by 10%.
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An example of the TBT data that I generated at BPM 1 is shown in Fig. 3. I do this for

BPMs 2 to 6.

-�� -� � � ��
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FIG. 3. This is the position and phase space at BPM 1 for 100 turns when the initial state is

(x0, x
′
0) = (0.001, 0.001). I have plotted the results for the ideal lattice and when the red D quad

(Q4) strength is increased by 10%.

2. The fitting model

The fitting model consists of thin quads that are shown in Fig. 4. For simplicity, (or my

laziness), I have put two thin corrector quads per quad. These quads are parametrized as

∆Qerr =

 1 0

−θ 0

 (22)

so that θ = 1/(focal length) of the thin quad. The location of each of these thin corrector

quads are shown in Fig. 4.

And because of the odd-ball way I have made the thin lenses, the focal length from the
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combination of these two lenses can be found with the following formula

∆f =
fθ(fθ − `q)

2fθ − `q
+
lq
2

(23)

where fθ = −1/θ and the value of lq is shown in Table I. Note: I have to add lq/2 to the first

term because the first term is the focal length w.r.t. the downstream thin lens. To bring it

back to the centre of the quad, I have to add lq/2.

Beam direction

Each thin lens of each quad has the same focusing strength 𝜃n

 𝜃1

 𝜃2  𝜃2

 𝜃3  𝜃3

 𝜃4  𝜃4

 𝜃5  𝜃5

 𝜃6  𝜃6

 𝜃1

FIG. 4. I have placed 2 thin lenses per quadrupole. These strength of these thin lenses will come

from the TBT data.

3. Kalman filtering

One advantage of the Kalman filter is that noise is taken into account. Table II summa-

rizes the σ of the Gaussian noise used for the algorithm. I have used a non-zero value for

the process noise variance, i.e. injection pulse to pulse variation, but I have set W (i) = 0

for the analysis — I think this should be okay.

I have set the following initial values to start the Kalman filter:

X̂(1)(0) =



ξ(1)(0) = 0.001

0

0

0

0

0

0

0



Σ̂(1)(0) = I8×8 (24)

11



Description Symbol Value

BPM read noise σξ 0.05 mm

Injection pulse to pulse variation (process noise) ΣW

 0.01 mm

0.01 mrad



Quad focus strength error θ(i) error tolerance Σθ


0.01× 10−3 m−1

...

0.01× 10−3 m−1


TABLE II. The σ of the Gaussian noise and tolerances used for the Kalman filter. I am calling Σθ

the error tolerance because I don’t think it makes sense to call it “noise” here.

4. Results

The results of the Kalman fits are shown in the following Figures 5, 6, and 7. The Kalman

fit to the “measured” x (noisy ξ BPM data) gives me the estimated value of x′. This result,

at least by eye, looks very good when compared to the underlying known model.

From Fig. 7, all the quad strength errors are small except for Q4 which is where I had

placed the error. Here, it is obvious why the Kalman filter is a good method: (a) it shows

how the parameter converges to the “correct” value and (b) it also shows the error of the

result.

From the last value of the θ4 in Fig. 7, I have θ4 = (−0.0141 ± 0.0005) m−1. And by

using Eq. 23, I find that the combined thin lens focal length to be

fθ4 = (36± 1) m (25)

In fact, the red D quad (Q4) error is 10% higher in strength and so the “correct” answer

should be

∆f = 1/(0.1× klq) = 37 m (26)

which is the same (barely) as fθ4. However, the above formula is really only valid for the

case when ∆f � lq which I’m not sure whether I should use this formula here or not. I need

to revisit this . . .

More interesting is to see how the β function as found by the Kalman filter matches the

lattice with the stronger red D quad (Q4). See Fig. 8. From this figure, the match between

the actual lattice and the Kalman lattice is within 0.5%.
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FIG. 5. The Kalman filter found very good parameters to fit to the TBT data.

V. CONCLUSION

From my toy FODO model, I have demonstrated that the Kalman filter does reconstruct

the lattice from TBT data. IMO, there are three major advantages:

• The ability to incorporate errors of the measurement and tolerances into the algorithm.

• The ability to identify the source of the lattice error and to calculate its size.

• Visualization of the convergence of the parametric errors.

I think to really make sure that the Kalman filter works for lattice reconstruction from

TBT data, I have to include finite chromaticity. Including chromaticity means that sex-

tupoles will need to be included in the model. Furthermore, chromaticity will damp out the

TBT data which may cause problems with the analysis. When chromaticity is included, I

cannot ignore δ like I had in the toy FODO model. To make it usable in real life, skew

quads, BPM calibration errors etc. will also have to be included as well. This is why I
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FIG. 6. This compares the Kalman filter results to the model angle at each BPM. I know what

the angle should be because I have the exact lattice with the quad error in it.

think the DKF may be better suited for this application rather than JKF because a smaller

matrix will need to be inverted.

[1] R.E. Kalman. A new approach to linear filtering and prediction problems. J. Basic Eng.,

82(D):35–45, 1960.

[2] P. Avery. Applied fitting theory V track fitting using the kalman filter. Technical Report

CBX92-39, Cornell University/LNS, 1992.

[3] G.T. Aldrich and W.B. Krabill. An application of kalman techniques to aircraft and missile

radar tracking. AIAA Journal, 11(7):932–934, 1973.

[4] Z. Ji and M. Brown. Joint state and parameter estimation for biochemical dynamic pathways

with iterative extended kalman filter: Comparison with dual state and parameter estimation.

Open Automation and Control Systems Jornal, 2:69–77, 2009.

14



� ��� ��� ��� ��� ��� ���

-������

������

������

������

������ #

θ�
(�

-
�
)

�� �������� �����

� ��� ��� ��� ��� ��� ���

�����

�����

�����

�����

�����

�����

������ #

θ�
(�

-
�
)

�� �������� �����

� ��� ��� ��� ��� ��� ���

������

������

������

������

������

������ #

θ�
(�

-
�
)

�� �������� �����

� ��� ��� ��� ��� ��� ���

-�����

-�����

-�����

�����

������ #
θ�

(�
-
�
)

�� �������� �����

� ��� ��� ��� ��� ��� ���

-������

-������

������

������

������

������

������ #

θ�
(�

-
�
)

�� �������� �����

� ��� ��� ��� ��� ��� ���

-�����

-�����

-�����

-�����

�����

������ #

θ�
(�

-
�
)

�� �������� �����

FIG. 7. Here’s the quad strength errors found from the fit. There is some small value close to zero

for all the quads except Q4, which is the red D quad (Q4). The plot that has θ4 is highlighted in

yellow. The ±1σ error found by the Kalman filter is also drawn here. Note: instead of “Turn #”

on the abscissa, I have “Sample #”. This is because for each turn, I have 6 BPM readings, i.e 6

samples/turn. Hence, I use sample # here rather than turn #.

[5] G.L. Plett. Lecture notes and recordings for ece5550: Applied kalman filtering. http://

mocha-java.uccs.edu/ECE5550/, 2014.

[6] G.L. Plett. Dual and joint EKF for simultaneous SOC and SOH estimation. In CD-ROM

Proceedings of the 21st Electric Vehicle Symposium (EVS21), 2005.

[7] V. Yadav. Kalman filter. https://mec560sbu.github.io/2016/10/29/KalmanFilter/, 2016.

15



� � �� ��
�

�

�

��

��

��

� (�)

β
(�

)

���������� ������� ������ ������ ��� ������ β�

������ ��������

������ β�

� � �� ��

-���

-���

-���

���

���

� (�)

Δ
β
/β

(%
)

�������� β ����� ������� ������ β ��� β ����� �� ������ �����
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